33 research outputs found

    Observations of stem water storage in trees of opposing hydraulic strategies

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/116368/1/ecs2201569165.pd

    Unsaturation of vapour pressure inside leaves of two conifer species

    Get PDF
    Stomatal conductance (gs) impacts both photosynthesis and transpiration, and is therefore fundamental to the global carbon and water cycles, food production, and ecosystem services. Mathematical models provide the primary means of analysing this important leaf gas exchange parameter. A nearly universal assumption in such models is that the vapour pressure inside leaves (ei) remains saturated under all conditions. The validity of this assumption has not been well tested, because so far ei cannot be measured directly. Here, we test this assumption using a novel technique, based on coupled measurements of leaf gas exchange and the stable isotope compositions of CO2 and water vapour passing over the leaf. We applied this technique to mature individuals of two semiarid conifer species. In both species, ei routinely dropped below saturation when leaves were exposed to moderate to high air vapour pressure deficits. Typical values of relative humidity in the intercellular air spaces were as low 0.9 in Juniperus monosperma and 0.8 in Pinus edulis. These departures of ei from saturation caused significant biases in calculations of gs and the intercellular CO2 concentration. Our results refute the longstanding assumption of saturated vapour pressure in plant leaves under all conditions.We thank Meisha Holloway-Phillips, Alex Cheesman, Hilary Stuart-Williams, and Michael Roderick for helpful discussions and comments on the manuscript; and Lily Cohen, Adam Collins, and Turin Dickman for measurement and field assistance. This research was supported by Australian Research Council Discovery Grants DP1097276 and DP150100588

    The influence of leaf pigments, phenology, and solar radiation regime on remotely sensed estimates of photosynthetic efficiency and photosynthetic potential, canopy photosynthesis, and net ecosystem exchange /by Steven R. Garrity.

    No full text
    Understanding the interactions between plant canopies and the environment is important for elucidating past, current, and future carbon cycle dynamics. Developments in instrumentation and modeling present new opportunities for quantifying the processes controlling photosynthesis at a variety of spatial and temporal scales, and thus are vital for estimating terrestrial carbon assimilation globally. The remote sensing based photochemical reflectance index (PRI) represents one such methodological advance. Leaf- and canopy-level PRI observations were combined with leaf optical and radiative transfer simulation models to elucidate the interactions between phenological changes in canopy structure, pigments, and physiology and reflectance-based estimates of photosynthetic radiation use efficiency. Simulation modeling results demonstrated that the PRI is significantly influenced by the carotenoid/chlorophyll ratio, photosynthetic acclimation, and changes in canopy structure. Equations describing the relationship between leaf pigments and spectral vegetation indices were developed with simulation models and used for prediction of carotenoid content. Empirically-based relationships between sky diffuse fraction and forest carbon assimilation were used to estimate the potential consequences of changing global radiation regimes on biosphere-atmosphere exchange of CO{esc}b2{esc}s. Simulations showed that a 1% increase/decrease in forest carbon assimilation occurs for every 1% increase/decrease in shortwave radiation that results from changes in sky diffuse fraction. Simulation results also showed no significant advantage of moderately diffuse skies compared to clear skies for total growing season carbon assimilation. The results of this dissertation demonstrate that the PRI should be considered to be more broadly useful for understanding photosynthetic efficiency and photoprotection than previously assumed. Such measurements may be useful for national efforts to understand the influence of climate change on terrestrial ecosystem carbon cycling.Thesis (Ph. D., Natural Resources)--University of Idaho, May 2010

    Terrestrial biosphere models need better representation of vegetation phenology: Results from the North American Carbon Program Site Synthesis

    No full text
    Phenology, by controlling the seasonal activity of vegetation on the land surface, plays a fundamental role in regulating photosynthesis and other ecosystem processes, as well as competitive interactions and feedbacks to the climate system. We conducted an analysis to evaluate the representation of phenology, and the associated seasonality of ecosystem-scale CO2 exchange, in 14 models participating in the North American Carbon Program Site Synthesis. Model predictions were evaluated using long-term measurements (emphasizing the period 2000–2006) from 10 forested sites within the AmeriFlux and Fluxnet-Canada networks. In deciduous forests, almost all models consistently predicted that the growing season started earlier, and ended later, than was actually observed; biases of 2 weeks or more were typical. For these sites, most models were also unable to explain more than a small fraction of the observed interannual variability in phenological transition dates. Finally, for deciduous forests, misrepresentation of the seasonal cycle resulted in over-prediction of gross ecosystem photosynthesis by +160 ± 145 g C m−2 yr−1 during the spring transition period and +75 ± 130 g C m−2 yr−1 during the autumn transition period (13% and 8% annual productivity, respectively) compensating for the tendency of most models to under-predict the magnitude of peak summertime photosynthetic rates. Models did a better job of predicting the seasonality of CO2 exchange for evergreen forests. These results highlight the need for improved understanding of the environmental controls on vegetation phenology and incorporation of this knowledge into better phenological models. Existing models are unlikely to predict future responses of phenology to climate change accurately and therefore will misrepresent the seasonality and interannual variability of key biosphere–atmosphere feedbacks and interactions in coupled global climate models

    Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea

    No full text
    We present two standards developed by the Genomic Standards Consortium (GSC) for reporting bacterial and archaeal genome sequences. Both are extensions of the Minimum Information about Any (x) Sequence (MIxS). The standards are the Minimum Information about a Single Amplified Genome (MISAG) and the Minimum Information about a Metagenome-Assembled Genome (MIMAG), including, but not limited to, assembly quality, and estimates of genome completeness and contamination. These standards can be used in combination with other GSC checklists, including the Minimum Information about a Genome Sequence (MIGS), Minimum Information about a Metagenomic Sequence (MIMS), and Minimum Information about a Marker Gene Sequence (MIMARKS). Community-wide adoption of MISAG and MIMAG will facilitate more robust comparative genomic analyses of bacterial and archaeal diversity
    corecore